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Abstract

In the earliest cortical stages of visual processing, a
scene is represented in different functional domains
selective for specific features. Maps of orientation
and spatial frequency preference have been
described in the primary visual cortex using simple
sinusoidal grating stimuli. However, recent imaging
experiments suggest that the maps of these two
spatial paramelers are not sufficient to describe
patterns of activity in different orientation domains
generated in response to complex, moving stimuli.
A madel of cortical organization is presented in
which cortical temporal frequency tuning is
superimposed on the maps of orientation and
spatial frequency tuning. The maps of these three
wning properties are sufficient 1o describe the
activity in orientation domains that have been
measured in response to drifting complex images
The model also makes specific predictions about
how moving images are represented in different
spatial frequency domains. These results suggest
that the tangential organization of primary visual
cortex can be described as a set of separable
receptive field feature maps including maps of
orientation,  spatial frequency and  temporal
frequency tuning properties.
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Model Predictions

Introduction

4 In a recent experiment, Basole et al. (2003)
showed that changing the temporal
properties of a moving image can change
which orientation domains are activated by
the image.

# Their results suggested that the two spatial
maps of cortical organization that have

Visual Stimuli in Fourier Space
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Conclusion

The organization of V1 can be ized by
separable receptive field feature maps of 6 tuning
parameters.

previously been proposed and
spatial frequency) are not sufficient to
describe the distributed responses of the
cortex to moving images.

¢ We describe the functional organization of
V1 in terms of the linear filters of the spatio-
temporal energy model initially developed
for individual neurons (Adelson and Bergen,
1985; Watson and Ahumada, 1985; Mante
and Carandini, 2003, 2004).

# The separable cortical maps of orientaion,
spatial frequency, and temporal frequency
can describe the distributed responses of the
cortex to complex moving stimuli.

# It is useful to consider cortical maps as maps
of receptive field parameters rather than
stimulus features. The average receptive field
properties of a cortical domain determine
the spatio-temporal tuning curves measured
in response to drifting gratings.

The spatial and temporal organization
of ferret area 17

(orientation map modified from Issa et al., 1999)

The spatial and temporal organization
of catarea 17

(orientation and spatial frequency map modified from lssa et al. 2000

Effects of changing the aspect ratio
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Effects of changing the drift angle & velocity

projection of the temporal frequency tuning curve onto spatial frequency coordinates
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Model Results:
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Population Response Model
Response in an orientation domain = integral of the product of all
tuning curves and stimulus in spatial frequency coordinates

Response =

sum over

the entire
Fourier
space
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discrete:

R($.v.4): response in the orientation domain § to a textured stimulus S(p): spatial frequency tuning curve
drifting at an angle velocity v T(v.94.p.9) : temporal frequency tuning curve
A(p.¢): amplitude of the Fourier Transform of the stimulus 0(§,9) : orientation tuning curve peaked at &

Abrupt Shifts with
Orthogonal Motion

transitions between orientation domains activated as

rift velocity is increased
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drift velocity at which population
response shifts by 90° degrees

Psychophysics: Above a threshold speed, motion streaks

are perc

eived along the direction of motion of an image
(Geisler, 1999; Geisler et al., 2001)

Shifts in Spatial

Frequency Domains

changing drift velocity shifts the preferred spatial frequency

Model: Response in a domain with spatial frequency preference
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Psychophysics: Visual acuity changes with image speed
(dynamic acuity; Levi, 1996.)

Experiment: Zhang and Issa, 2004
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