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Abstract

Visual acuity is degraded when an image moves quickly.
Retinal and LGN neurons can follow much more rapid
changes in contrast than can neurons in V1. This suggests
that the spatial and temporal tuning properties of V1 limit
dynamic acuity. To test this hypothesis we used optical
intrinsic signal imaging to measure responses in cat Area 17
to complex moving images. Stimuli consisted of pairs of
gratings, each grating having the same orientation but
different spatial frequency (SF). Changes in cortical
reflectance were measured in different SF domains in
response to stimuli drifting at one of four speeds. Consistent
with the hypothesis, activity in high-SF domains decreased
as drift speed increased, but activity in low-SF domains was
maintained.

To determine If linear filtering properties could account for
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Experimental Predictions
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A Linear Model

Can a linear model describe the data?

In a linear model, cortical tuning properties are described by three
band-pass filters: orientation, spatial frequency and temporal

frequency filters.
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Non-Linear Model
Intra-cortical Inhibition
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the changing activity in SF domains, we used optical imaging
and extracellular electrophysiology to characterize six spatio-

Intracortical Inhibition

Visual Stimuli Comparison to Linear Predictions

temporal parameters in cat Area 17. These parameters
included orientation preference and bandwidth, SF
preference and bandwidth, and temporal frequency (TF)

1. Present sine waves of different SF to define functional domains of
V1 according to their SF preference.

The linear model does not describe the data well.
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Non-linear model better describes the data.
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The response of high and low SF domains
changes when moving speed increases (Fig. A
and Fig. B). The response difference between
e 1000 high and low SF domain drops from positive to
Drift Speed (deg/s) negative value (Fig. C). N=3 animals.
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We fit the SF and TF tuning curves with a log-Gaussian function s(p)=exp[-(log,P-
log,S,)%/207], with a peak of S, and a bandwidth of o. The orientation tuning curve is

defined as a wrapped Gaussian, R(®)=exp[-(P —¢rp)2f20ﬂz], with a peak orientation @

of and a characteristic width of o,
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